💡
Network Fundamentals
  • About This Site
  • Network
  • Medium
  • Types of Network:
  • LAN
  • MAN
  • WAN
  • Internet
  • Types of Internet Connections
  • Cable Connection
  • DSL Connection
  • Internet Standard & Protocols
  • Internet Networking Model
  • SNA Networking Model
  • OSI Networking Model
  • TCP-IP Networking Model
  • TCP-IP Layers
  • Application Layer
  • HTTP (Hyper Text Transfer Protocol)
  • Transport Layer
  • TCP (Transmission Control Protocol)
  • Network Layer
  • IP (Internet Protocol)
  • IPv4:
  • IPv4 Address parts
  • IPv4 Address Classes
  • IPv6:
  • Data-Link Layer
  • Physical Layer
  • An Ethernet
  • A SOHO LAN Network
  • An Enterprise LAN Network
  • Physical Layer Standards
  • Data-Link Layer Standards
  • Transmitting Data over Ethernet UTP
  • Transmitting Data over Fiber Optic Cable (using Hot-Pluggable Transceivers)
  • Cabling Pinouts (Ethernet UTP)
  • Cabling Pinouts (Fiber Optic)
  • Ethernet Standards (UTP)
  • Ethernet Standards (Fiber Optic)
  • LAN Data-Link Layer Protocols
  • Ethernet Addressing (MAC)
  • Types of Networking Devices
  • HUB
  • SWITCH
  • CSMA/CD (Carrier Sense Multiple Access / Collision Detection):
  • Lease-Line WAN
  • WAN Data-Link Layer Protocols
  • HDLC Encapsulating and Re-encapsulating
  • Ethernet WAN (EoMPLS)
  • IP Routing (BIG FLOW)
  • Router
  • Subnetting
  • Binary Rules
  • Binary Method Example 1
  • Binary Method Example 2
  • Binary Method Example 3
  • Subnetting Quick Method Rules
  • Subnetting Quick Method Example 1
  • Subnetting BEST Method Rules
  • Subnetting BEST Method Example 1
  • Subnetting BEST Method Example 2
  • Subnetting BEST Method Example 3a
  • Subnetting BEST Method Example 3b
  • Subnetting BEST Method Example 3c
  • Subnetting BEST Method Example 4
  • Dynamic Routing Protocol
  • DNS (Domain Name System)
  • ARP (Address Resolution Protocol)
  • PING (Packet Internet Groper)
  • Cisco OS (IOS)
  • Memory Types
  • Cisco CLI
  • Console Port:
  • Telnet Access (Teletype network) (P No. 23):
  • SSH (Secure Shell) (P No. 22)
  • Console Cabling
  • CLI Modes
  • Securing User Mode and Privileged Mode
  • Securing User & Privileged Mode For Console Users
  • Securing User & Privileged Mode For Telnet Users
  • Securing User & Privileged Mode For SSH Users
  • AAA (Authentication, Authorization and Accounting) Server
  • AAA 802.1x Protocols(Radius & TACACS+)
  • Ethernet LAN Switching
  • VLAN
  • Configuring VLAN
  • VTP (Vlan Trunking Protocol)
  • Trunk Port
  • Trunking Protocol (802.1Q)
  • DTP (Dynamic Trunking Protocol)
  • Voice VLAN
  • Why STP?
  • What STP Does?
  • How STP works?
  • STP Messages (BPDU)
  • Electing a RB (Root Bridge/Switch)
  • Electing One Root Port (on each Non RB)
  • Elect One/Multiple Designated Ports on each Non RB:
  • Changing the STP Settings:
  • STP (Spanning Tree Protocol)
  • STP Convergence (if something changes/link fails):
  • STP (Spanning Tree Protocol) Versions
  • STP/RSTP States:
  • PortFast
  • BPDU Guard
  • RSTP (Rapid Spanning Tree)
  • Port Roles in RSTP
  • RSTP Port States
  • Ether Channel
  • Switched Virtual Interface
  • Half Duplex
  • Full Duplex
  • Autonegotiation
  • Duplex Mismatch:
  • Verifying Duplex Mismatch
  • Number History
  • 10 to the power of x
  • 2 to the power of x
Powered by GitBook
On this page
  • A Router can be populated in 3 ways:
  • References:

Router

PreviousIP Routing (BIG FLOW)NextSubnetting

Last updated 4 years ago

1) Router is an Intelligent Device. 2) As soon as a Router receives a packet on itss port it will read IP Address Refer Routing Table & take the Forwarding decision. 3) IP Address is a L3 Address, Routing Table is a L3 Table. Hence, a Router is a L3 . 4) On receiving a packet on its port Router will open L3 information, Refer Routing Table & forward the packet only if it has a route to reach that Network or else discard it. 5) Because Router refers to Routing Table to take the forwarding decision hence Routing Table should be populated with Routes.

A Router can be populated in 3 ways:

i) Directly connected Routes will automatically reflect in Router's Routing Table. ii) Administrator can make Static Rote Entry in Router's Routing Table iii) will learn Routes Dynamically in Router's Routing Table.

6) Switch switches within the Subnet & Router routes between the Network. Because Router routes between the Network hence every port of Router must be in the different Network. No two ports of the Router can belong to the same . 7) Routers will never forward a broadcast received on a port to other ports. A Router has been created to break the Broadcast Domain. 8) Every port of a Router is a member of separate collision domain. Similarly, every port of Router is a member of a Separate Broadcast Domain hence Router is a multiple Collision & Broadcast Domain Device. 9) Multiple Ports of a Router can have the same MAC Address or Multiple MAC Addresses.

  • Router/Switch contains 4 different Types of

References:

RST Notes

Networking device
Dynamic Routing Protocols
Subnet
Memory